
Mechanical Sympathy in Go

You don’t have to be an engineer to be a racing driver,

but you do have to have mechanical sympathy

Sir Jackie Stewart - three-time F1 world champion

Mechanical Sympathy Applied to IT

• Concept applied to software by Martin Thompson

• As developers, we don’t need to be hardware engineers

• Yet, having an understanding of how does a machine work can make us a
better developer (algorithms, data structures)

• Today: How to be a better Go developer by understanding how CPUs are working

Teiva Harsanyi

 teivah

Software Engineer - Beat

beat.careers

CPU Architecture
Locality of Reference
Data-Oriented Design

Caching Pitfall
Concurrency

CPU Architecture - Intel Core i5-7300
CPU

Core 0

T0 L1D

L1I
L2

T1

Core 1

T0 L1D

L1I
L2

T1

L3
Main

Memory

L1D/L1I L2 L3

Cache size

32 KB 256 KB

4 MB

CPU Architecture - Intel Core i5-7300

L1

L2

L3

Main Memory

Thread

As a developer,

I would like my application to leverage CPU caches

~50/100 times slower than L1

~10 times slower than L1

~3 times slower than L1

~1 ns

CPU Architecture
Locality of Reference
Data-Oriented Design

Caching Pitfall
Concurrency

Locality of Reference

If a particular memory location is referenced, it is likely that…

The same location will be referenced again in a near future

Nearby memory locations will be referenced in a near future

Temporal

Locality

Spatial

Locality

Spatial Locality

Slice (in our heads) CPU cache

Matrix (main memory)

…

Block

Cache line

• Instead of copying a single variable, the processor will copy a cache line

• Cache line: contiguous segment of memory of a fixed size (usually 64 bytes)

• Limited number of cache miss (compulsory miss)

• Theory (other applications can run at the same time on the same core)

• Cache placement policy (L1, L2 or L3?)

?

Helping the CPU

• To help the CPU, an application needs to leverage locality of reference

• … and predictability

Linked List Iteration
• Iterating on a linked list that should be allocated contiguously should be decent

• Possible spatial locality

• But not predictable for the CPU (no line fetching)

Linked list iteration Slice iteration

~230% slower

…

Main memory

Slice iteration: one element out of two

…

Main memory

Linked list iteration

Backwards Iteration
• What if we iterate backwards on a slice?

Forwards Backwards

Forwards Backwards
• Spatial locality

• The CPU was able to predict that we iterate backwards

• Slightly faster because the bound check is faster

…

Main memory

• Striding: how does a CPU work through our data?

• Unit stride: each element

• Constant stride: each x element (e.g. one out of two)

• Non-unit stride: might be spread across memory (linked list)

How to Make Things Predictable?

?

Predictable

Predictable but less efficient

Not predictable

• CPU caches are extremely fast

• A CPU doesn’t cache a single variable but a cache line

• I can help the CPU if my application leverages:

• Locality of reference

• Predictability

CPU Architecture
Locality of Reference
Data-Oriented Design

Caching Pitfall
Concurrency

Data-Oriented Design

• “The purpose of all programs and all parts of those programs is to transform data
from one form to another” - Mike Acton

• Object-Oriented design is a way to mirror how we interact with the real world

• Yet, hardware does not like objects

• Data-Oriented design is about organising data in a way to get the most value out
of each cache line

Data-Oriented Design

• 2 concrete examples:

• Structure alignment

• Slice of structures vs structure of slices

Structure Alignment

Structure Alignment
• The size of a structure is a multiple of the word size (64 bits on a 64-bit, etc.)

b1

i

b2

i

b1 b2

10k slice: 3750 cache lines

(cache line: 64 bytes)

Structure

alignment

In

memory

24 bytes 16 bytes

10k slice: 2500 cache lines

64 bits
64 bits

Structure Alignment

Not compact Compact

30% faster

• Memory footprint (GC pressure)

• Iterating over a compact data structure is more efficient as it requires
less caches lines

Slice of Structures vs Structure of Slices

Slice of structs Struct of slices

a b

11 cache lines 4 cache lines

a b

In

memory

Constant

stride

Unit

stride

30% faster

Slice of structs Struct of slices

Slice of Structures vs Structure of Slices

• A concrete example: Go standard flate package

• Flate is a compression algorithm based on two other algorithms: huffman
encoding an LZ77 compression

Slice of Structures vs Structure of Slices

• 5 iteration loops on either hcode.code or hcode.len

• Example:

• Metrics?

https://github.com/golang/go: src/compress/flate/huffman_code.go

Go flate package Go flate package modified

Xcode Instruments

Slice of Structures vs Structure of Slices

Encode/Digits/Huffman/1e6 Encode/Newton/Huffman/1e6
Slice of structs Struct of slices

Between 21% and 28% faster

Go flate package Go flate package modified

• I can design algorithms to leverage CPU caches

• I can also organise my data to get the most value out of cache lines

• Unit stride > Constant stride > Non-unit stride

CPU Architecture
Locality of Reference
Data-Oriented Design

Caching Pitfall
Concurrency

Cache line

• Two-dimensional array of int64s
64 bytes cache line (8 elements)

• Traverse each row multiple times the first
8 columns only

• rows is small enough so that each line should fit in
the cache

• The execution time depends on n (?)

• Depending on n, the execution can be up to
100% slower

8 int64s

n columns (variable)

r
o
w
s

for 0..k {
 for i in 0..rows {
 for j in 0..8 {
 sum += a[i][j]
 }
 }
}

Cache line

Cache line

Cache line

Cache line

Cache line

Cache line

Cache line

Cache line

Cache line

0010000

0100000

1000000

0000000

0000100

0001000

0001100

0010100
0011000

0011100

0110100
0111000

0111100

0000000

0010000

0100000

1000000

Matrix in memory

Cache
0010000

…

…

…

…

…

…

…

Program:

…

load address 0000000

…

• In a fully associative cache, we may have to traverse the whole cache to check if an
address is present

• Example on an Intel Core i5-7300 L1D: we need to iterate on 512 lines

• Solution: partitioning

We want to iterate on each blue block
A block is referenced by an address

0010000

0100000

1000000

0000000

0000100

0001000

0001100

0010100
0011000

0011100

A cache is partitioned into sets

A block can belong to only one set

set 0

set 1

set 2

set 3

Matrix

in memory

E.g Block size: 4 bits

E.g. 8 lines, 2-way associative

nb of sets = 8 / 2 = 4

Cache Tag bits

bositb

0110100
0111000

0111100

k-way associative cache: k lines per set
4 = 22

2 represents the set index (si)

000

4 = 22
2 represents the

 block offset (bo)

0 0 0 0 0 0 0
This address belongs to set 0

0000000

0010000

0100000

1000000

Load

0010000

0100000

1000000

0000000

0000100

0001000

0001100

0010100
0011000

0011100

A cache is partitioned into sets

A block can belong to only one set

set 0

set 1

set 2

set 3

Matrix

in memory

E.g Block size: 4 bits

E.g. 8 lines, 2-way associative

nb of sets = 8 / 2 = 4

Cache Tag bits

0110100
0111000

0111100

k-way associative cache: k lines per set
4 = 22

2 represents the set index (si)

000

001

010

100

The distribution is not even, we used only one set

This constant stride is called the critical stride

4 = 22
2 represents the

 block offset (bo)
It will generate a lot of cache misses (conflict miss)

0000000
bositb

0 0 1 0 0 0 0

bositb
0 1 0 0 0 0 0

bositb
1 0 0 0 0 0 0

0010000

0100000

1000000

bositb
0 0 0 0 0 0 0

Load

bositb
0 0 0 0 0 0 0

• Critical stride = nb sets x cache line size

• Example with an Intel Core i5-7300:

• Cache line = 64 bytes

• 32 KB, 8-way set associative, 64 sets

• Critical stride = 64 x 64 = 4 KB

• We reach a critical stride with n = 512 elements

• If n = 512, we are going to use 1 set only

513
512
256
128

64

n Cache line

8 int64s - 64 bytes

n elements (variable)

513

512

256

128

64

• CPU caches are partitioned

• Depending on my data, my application can occupy a fraction of the cache only

• Critical stride

CPU Architecture
Locality of Reference
Data-Oriented Design

Caching Pitfall
Concurrency

Why Concurrency?

• Instead of focusing on clock speed, vendors focus on multicores and
hyperthreading architectures

• The free lunch is over - Herb Sutter, 2005

• We cannot rely solely on the hardware to make our programs faster

Concurrency is the next major revolution in how we write software

mailto:http://www.gotw.ca/publications/concurrency-ddj.htm

Race-free
implementation!

Core 1Core 0

L1D

Main Memory

var1 var2var1 var2

L1D

var1 var2

• What if both goroutines want to update their own lines

• The CPU must guarantee cache coherency

• MESI protocol (Modified, Exclusive, Shared, Invalid)

Core 1

L1D

var1 var2

Core 0

L1D

Update

var1 var2

Update

Main Memory

var1 var2var1 var2var1 var2

• Why does it matter?

• False sharing - a cache line is shared across two cores with at least one
goroutine being a writer

• Sharing memory is an illusion

structA.n and structB.n belongs to
the same cache line

• How to prevent false sharing?

• Solution 1:
Do not communicate by sharing memory;
instead, share memory by communicating

False Sharing

• How to prevent false sharing?

• Solution 2: padding
Main Memory

var2

var1

False Sharing // 64 bytes

// 64 bytes

False Sharing

• Padding is hard - Dave Cheney

• Sometimes, padding is necessary. E.g. we are obliged to share memory and
we want to prevent false sharing (library, etc.).

False Sharing 1. Channels 2. Padding

~60% faster

• Let’s compare the results:

https://dave.cheney.net/2015/10/09/padding-is-hard

Conclusion

3 Main Takeaways

• Sharing memory is an illusion

• A code that looks perfectly valid might
still be problematic at CPU level:

• Caching distribution

• False sharing

• We can help the CPU with
locality of reference and predictability
(algorithms & data structures)

• Watch out for premature:

• Optimisations

• Concurrency

• Mechanical sympathy goes
beyond the very scope of CPUs

What else?

Thank You
teivah

