
4 Reliability Anti-Patterns

“The future belongs to those who believe in the beauty of their dreams reliability”
- Eleanor Roosevelt (revisited)

2024

Air Traffic Management
Software engineer in a
safety critical domain

Ride-Hailing, Docker, etc.
Software engineering

and reliability advocacy

Google
SRE

(Site Reliability Engineer)

#1
Reliability Procrastination
Culture
A culture of verbal acknowledgement and inaction

Reliability
Procrastination
Culture

A cultural mindset where organizations
avoid embracing reliability,
often due to the perceived
inconvenience it may bring

For many executives, reliability is a word like
environment. Nobody is against it per se.
Everyone is for the environment and everyone is
for reliability, but few are willing to endure
inconvenience to make it a reality. *

Jos Visser

“
”

Principal engineer at Amazon, ex-SRE at Google
* Slightly adapted for simplicity

Some Characteristics

Reactive culture

Reactive over
proactive

Short-term vision

Quick fixes over
long-term solutions

Blame game

Blame over
collaboration

Solutions

Cultural shift

Blameless culture

Post-mortems

No hero

SLOs

Solutions

SRE Culture Dev / Ops split DevOps SRE

SRE: People focused on reliability challenges

Teams that excel at
reliability engineering are
1.8x more likely to meet or
exceed organizational goals

Source: 2022 State of DevOps

Reliability Procrastination Culture

1.8x

A reluctance to embrace failures

#2
Failure Denial Syndrome

Failure
Denial
Syndrome

A mindset that avoids or denies
the inevitability of failures
in complex systems

Story Time

The major difference between a thing that
might go wrong and a thing that cannot
possibly go wrong is that when a thing that
cannot possibly go wrong goes wrong it usually
turns out to be impossible to get at or repair.

Douglas Adams

“
”

Author of The Hitchhiker's Guide to the Galaxy and the universe’s first SRE?

Why?

Fear of failure

People may worry
about the

consequences

Blame game

People or teams
may deny failures

to avoid being
blamed

Not a lack of skills

Lack of reliability
culture

Solutions

Organizations
should treat
failures as
the norm

Don't tell me how it works.
Tell me how it breaks.

The question is not if it's gonna fail,
but how it's gonna fail

Solutions

Design for failure

Cattle > pets

Crash-only software

Don’t detect failure,
but the absence of success

Bulkhead pattern

Graceful degradation 🔍

Example: Load shedding

But not only!

During an unexpected event, an application can
reduce its quality of service

Graceful Degradation

First in

First out

Under high load, this user will
have already abandoned its request

Graceful Degradation: Facebook Adaptative Queue

FIFO

Last in

First out

LIFO

Under normal conditions: FIFO; under heavy load: LIFO

Rationale: giving some response back is better than no response back

User requests User requests

Failures must be the norm

Design for failure:

Failure Denial Syndrome

Resilient Robust Reliable

When observability becomes a reliability impediment

#3
Observability Deficiency

A situation in which observability
compromises reliability through
inefficiency, blind spots, and confusion

Observability
Deficiency

Streetlight Effect

Streetlight Effect

Cognitive bias: when people focus on what is easily visible

Reason why many organisations fall into the "trap" of observability

Observability has now been mushed and
attened away by million of dollars of marketing

spend. Now, if you ask any CIO/CTO about their
observability journey, they just look confused:

Charity Majors

“

”
CTO of Honeycomb, co-author of Observability Engineering

"We already have observability. We have logs
AND metrics."

Observability Done Wrong

Some negative
impacts

Inefficiency

Blind spots

Misleading assessments

👉 Erode reliability

Let's Take a Step Back

Why do we need
observability?

Complexity Agility

First
principle

Unknown
unknowns Explorability

Observability

You can understand any state of your system (no matter
how novel or bizarre) by slicing and dicing high-cardinality
and high-dimensionality telemetry data without needing to
ship new code

You Have Observability If...

Observability Deficiency

We should
understand why we
need observability

We should promote
a culture of

observability

It should stay a
moving target

When hope becomes a deployment strategy

#4
Rollout Roulette

Rollout
Roulette

The risky practice of deploying
changes to production without an
efficient and well-defined plan

Rollout Done Wrong

Negative
impacts

Stress Customer
dissatisfaction

Reputation
damage

Solutions

Let’s go over some best practices

The more frequently we rollout, the less change between releases

Frequency

Rollout even if there are no changes

Canary vs. Progressive Rollout

Progressive rollout

Progressively increasing scope

Canary rollout

Partial and time-limited

Few production environments Many production environments

Rollback

Rollout to an earlier version

A crucial part of a reliable deployment strategy

Tested Effective Easily
accessible

Feature Flag

Flag
disabled

Old path

New path

Feature Flag

Flag
enabled

Old path

New path

Rollback?

Feature Flag

Flag
disabled

Old path

Consistency Documented
and explicit Regular cleaning

New path

Rollout Supervision

End users metrics
Any behavior

changes

Rollout Roulette

Change is the
first source of

outages
Faster is safer

Let's rely on
proven industry
best practices

Conclusion

We should defeat the Reliability Procrastination Culture

by understanding that reliability is a force multiplier

We should break free from the Failure Denial Syndrome

by embracing failures

We should cure Observability Deficiency

by understanding why we need observability
and how it is a backbone for reliability

We should defeat the Rollout Roulette

by building efficient rollout plans

If you think reliability is too expensive and
inconvenient, try unreliability for a while…

Jos Visser

“ ”
Principal engineer at Amazon, ex-SRE at Google

Proprietary + Confidential

teivah.io/confoo-reliability
teivah

Teiva Harsanyi

http://teivah.io/confoo-reliability
https://twitter.com/teivah

